
Jeannie User Guide
A compiler contributed to xtc, Version 1.13.3 (05/14/08)

Martin Hirzel and Robert Grimm

The current Jeannie project members are Robert Grimm, Martin Hirzel, Byeoncheol “BK”
Lee, and Kathryn McKinley.
We received helpful feedback from Joshua Auerbach, Rodric Rabbah, Gang Tan, David
Ungar, and Jan Vitek.
This material is based in part upon work supported by the National Science Foundation
under Grants No. CNS-0448349 and CNS-0615129 and by the Defense Advanced Research
Projects Agency under Contract No. NBCH30390004.

This is the user guide for a compiler contributed to xtc Version 1.13.3 (05/14/08).
Copyright c© 2007, 2008 IBM, Robert Grimm, and NYU.

http://cs.nyu.edu/rgrimm
http://www.research.ibm.com/people/h/hirzel
http://www.cs.utexas.edu/users/bclee
http://www.cs.utexas.edu/users/bclee
http://www.cs.utexas.edu/users/mckinley

i

Table of Contents

1 Introduction . 1
1.1 Installation . 1

1.1.1 Requirements . 1
1.1.2 Download . 1
1.1.3 Configuration. 2
1.1.4 Testing the installation . 2

1.2 Hello world! . 3
1.3 Trouble shooting . 3

2 Examples. 5
2.1 Program structure . 5
2.2 Locals . 6
2.3 Garbage collection . 7
2.4 Arrays . 8
2.5 Abrupt control flow . 11
2.6 Strings . 13
2.7 Debugging . 14

3 Reference . 17
3.1 Quick reference . 17
3.2 Language features . 18

3.2.1 Syntax . 18
3.2.2 Type equivalences . 19
3.2.3 C in Java . 20
3.2.4 Java in C . 21
3.2.5 with . 23
3.2.6 cancel and commit . 24

3.3 Builtin functions . 24
3.3.1 copyFromJava . 25
3.3.2 copyToJava . 25
3.3.3 newJavaString . 26
3.3.4 stringUTFLength . 26

3.4 Tools . 27
3.4.1 jeannie.sh . 27
3.4.2 Preprocessor . 31
3.4.3 Compiler . 32
3.4.4 Postprocessor. 34

Index . 36

Chapter 1: Introduction 1

1 Introduction

Jeannie is a programming language that combines Java and C. It supports the full syntax
of both languages, and adds a backtick (‘) operator for nesting Java in C and nesting C
in Java. You can use it to implement a feature of your Java application with an existing
C library. In this case, you would write glue code that nests C in Java. Another common
usage scenario is when you want to enhance your C application with some Java features,
such as multi-threading, exception handling, or GUI controls. In this case, you would nest
Java code in C.

The Jeannie language is implemented by a compiler contributed to xtc. That is
the official name of the code that IBM has donated to the xtc compiler framework
(http://cs.nyu.edu/rgrimm/xtc/). The compiler translates Jeannie code first into
Java and C source code that uses the JNI, and then from there into class files for
Java and a dynamically linked library for C. This user guide describes how to use
the compiler and the language in practice. The research that went into Jeannie is
described in a conference paper (http://domino.watson.ibm.com/comm/research_
people.nsf/pages/hirzel.main.html#oopsla07-jeannie).

1.1 Installation

This section describes how to install xtc, which includes the Jeannie compiler, and how to
test that the installed Jeannie compiler runs correctly.

1.1.1 Requirements

The Jeannie compiler uses Java Standard Edition version 5 or higher and several GNU
command line tools, including gcc, bash, make, find, zip, and others. You need to make
sure that the Java compiler, the JVM, and the GNU tools are installed and on your PATH.
We have tested Jeannie with multiple Java virtual machines (IBM J9, Sun HotSpot, and
Jikes RVM), and on multiple operating systems (Linux, Windows/Cygwin, and Mac OS
X).

1.1.2 Download

You need xtc-core.zip to run Jeannie, xtc-testsuite.zip to test your local Jeannie installation,
and antlr.jar and junit.jar to compile xtc. You can download these four files from their
respective project websites, for example like this:

wget http://cs.nyu.edu/rgrimm/xtc/xtc-core.zip
wget http://cs.nyu.edu/rgrimm/xtc/xtc-testsuite.zip
wget http://www.antlr.org/download/antlrworks-1.1.4.jar
wget http://downloads.sourceforge.net/junit/junit-4.4.jar

Pick a directory where you want your local xtc and Jeannie installation to live. Assuming
your directory is called local_install_dir, populate it with your downloads like this:

unzip -d local_install_dir xtc-core.zip
unzip -d local_install_dir xtc-testsuite.zip
mv antlrworks-1.1.4.jar local_install_dir/xtc/bin/antlr.jar
mv junit-4.4.jar local_install_dir/xtc/bin/junit.jar

http://cs.nyu.edu/rgrimm/xtc/
http://domino.watson.ibm.com/comm/research_people.nsf/pages/hirzel.main.html#oopsla07-jeannie
http://domino.watson.ibm.com/comm/research_people.nsf/pages/hirzel.main.html#oopsla07-jeannie

Chapter 1: Introduction 2

1.1.3 Configuration

You need to set your PATH environment variable to include your Java 1.5 compiler and
JVM. In addition, you need to set PATH_SEP either to ‘:’ on Linux or Mac OS X or to ‘;’ on
Windows/Cygwin. Assuming you unzipped xtc to a directory called local_install_dir,
you now need to perform the following steps:

export PATH_SEP=’:’
export JAVA_DEV_ROOT=local_install_dir/xtc
export PATH=$JAVA_DEV_ROOT/src/xtc/lang/jeannie:$PATH
export CLASSPATH=$JAVA_DEV_ROOT/bin/junit.jar$PATH_SEP$CLASSPATH
export CLASSPATH=$JAVA_DEV_ROOT/bin/antlr.jar$PATH_SEP$CLASSPATH
export CLASSPATH=$JAVA_DEV_ROOT/classes$PATH_SEP$CLASSPATH
make -C $JAVA_DEV_ROOT classes configure

The last step will use xtc/Makefile to compile and configure xtc along with the Jeannie
compiler. You may see some warning messages related to Java generics, but the compilation
should keep going and finish without any fatal error messages.

1.1.4 Testing the installation

After completing the download and configuration step, try the following:
make -C $JAVA_DEV_ROOT check-jeannie

This first invokes a few hundred JUnit tests, each of which writes a dot ‘.’ to the console.
Next, it invokes a few dozen integration tests, each of which writes a couple of lines to the
console. Overall, the testing output should look like this:

java -ea junit.textui.TestRunner xtc.lang.jeannie.UnitTests

...

...

many more dots for unit tests
...

.............

Time: 7.15

OK (874 tests)

make -C local_install_dir/xtc/fonda/jeannie_testsuite cleanall

find local_install_dir/xtc/fonda/jeannie_testsuite -name ’*~’ -exec rm -f \{\} \;

rm -f -r tmp

rm -f core.*.dmp javacore.*.txt

make -C /Users/hirzel/local_install_dir/xtc/fonda/jeannie_testsuite test

==== integration test_000 ====

diff tmp/000mangled/output.txt tmp/000sugared/output.txt

==== integration test_001 ====

diff tmp/001mangled/output.txt tmp/001sugared/output.txt

many more lines for integration tests
==== integration test_035 ====

diff tmp/035mangled/output.txt tmp/035sugared/output.txt

==== integration test_036 ====

diff tmp/036mangled/output.txt tmp/036sugared/output.txt

==== integration tests completed ====

By the time you read this, there may be more tests than shown above. Two of the integration
tests (18 and 26) write some timing numbers to the console, but as long as all tests end

Chapter 1: Introduction 3

with diff and without finding any differences between the mangled and sugared output,
everything went fine.

1.2 Hello world!

The following Jeannie program (integration test 041) has a Java main method that uses a
nested C call to print "Hello, world!" to the console.

‘.C { // 1
#include <stdio.h> // 2
} // 3
class Main { // 4
public static void main(String[] args) { // 5
‘printf("Hello, world!\n"); // 6

} // 7
} // 8

The file starts with a block of C code that includes a header file (Lines 1-3) containing,
among other things, the prototype for the printf function. In general, the backtick symbol
(‘) toggles between the languages Java and C. It can be either qualified (like ‘.C on Line 1)
or simple (like on Line 6). The example code defines a Java class Main with a Java method
main (Lines 4 and 5). The body of the method (Line 6) contains a simple backtick to toggle
from Java to C for the call printf("Hello, world!\n"). When used in an expression, the
backtick is a unary prefix operator that affects the following subexpression.

To test this hello world program, you need to compile it as follows:

jeannie.sh Main.jni

The Jeannie compiler will generate a class file (Main.class), a shared library (on Linux:
libMain.so; on Windows/Cygwin: Main.dll; on Mac OS X: libMain.jnilib), and several
intermediate files. Before you can run the example, you need to tell the operating system
where to find the shared library, by adding the directory to your PATH and LD_LIBRARY_
PATH environment variables. Assuming the example code is in the current directory (.),
you can run it as follows:

java -cp . -Djava.library.path=. Main

This should, of course, print "Hello, world!" to the console.

1.3 Trouble shooting

As with any complex piece of software, you may run into trouble when trying to use the
Jeannie compiler. This section describes a few common issues and how to address them. We
will keep updating this section as we encounter additional difficulties and their solutions.

If you cannot compile the Jeannie compiler at all, or if it does not run, you should double-
check whether all the required tools are installed on your local machine. In particular, you
need Java 1.5 or higher, and you need the GNU C compiler, see Section 1.1.1 [Requirements],
page 1. To get the required tools on Windows, use Cygwin. To get the required tools on
Mac OS, install XCode (that should be on one of the CDs that came with your Mac), and
get the remaining tools from an open source site such as Fink. Next, try whether you can
run the tests that come with Jeannie, see Section 1.1.4 [Testing the installation], page 2.

Chapter 1: Introduction 4

Finally, double-check that you set your environment variables correctly, in particular, PATH,
CLASSPATH, and LD_LIBRARY_PATH.

If the Jeannie compiler throws an internal exception rather than producing a nice error
message, that’s a bug; please report it, along with a minimal test case that reproduces it.

If you get your Jeannie program to compile, but it crashes at runtime, the two most
common symptoms are segmentation faults or dynamic linker errors.

A segmentation fault occurs when your program tries to access an illegal memory address.
This is usually caused by null pointers or out of bounds accesses in C. To find the defect,
you should start by rebuilding your program from scratch, to rule out problems caused
by inconsistent incremental compilation. Next, you should run with a symbolic interactive
debugger; see Section 2.7 [Debugging], page 14. If you find that the problem is in the
Jeannie compiler (e.g., using an illegal method ID), please report the bug, along with a
minimal test case that reproduces it.

A dynamic linker error occurs when your program can not find a function that should
be in a shared object file (DLL on Windows). This problem is common in hand-written
JNI code, but should not occur for Jeannie-generated JNI code. To find the defect, you
should start by rebuilding your program from scratch, to rule out problems caused by
inconsistent incremental compilation. Next, make sure the shared library is on the path,
using the -Dload-library-path JVM command line option or the PATH and LD_LIBRARY_
PATH environment variables. If it still does not work, you should inspect the code related
to the missing symbol. To make Jeannie-generated code easier to read, use the -pretty
compiler flag. If you believe that the problem is caused by Jeannie-generated code, please
report the bug, along with a minimal test case that reproduces it. It is more likely that the
problem is caused by other shared libraries that you link to. Consult your local linker guru,
and use tools such as nm to investigate the symbols of your object files. You may need to
specify the external DLL like any other file at the end of the compiler command line.

Chapter 2: Examples 5

2 Examples

This chapter discusses Jeannie by example. Each section uses a short self-contained piece
of code to illustrate one aspect of how to use the Jeannie language. If you read this on your
computer screen instead of in a printed hardcopy, I recommend you read the html version,
since it does not have the page breaks of the pdf version. The examples are designed so
you can easily copy-and-paste them and try them out yourself. You should play with the
examples, changing things here and there to see what happens.

2.1 Program structure

The following example (integration test 039) illustrates the structure of a Jeannie file.
package cstdlib; // 1
import java.util.Random; // 2
‘.C { // 3
#include <math.h> // 4
} // 5
class Math { // 6
public static native double pow(double x, double y) ‘{ // 7
return (‘double)pow(‘x, ‘y); // 8

} // 9
} //10
public class Main { //11
public static void main(String[] args) { //12
Random random = new Random(123); //13
for (int i=0; i<3; i++) { //14
double d = 100.0 * random.nextDouble(); //15
double r = Math.pow(d, 1.0 / 3.0); //16
System.out.println("d " + d + " r " + r + " ^3 " + r*r*r); //17

} //18
} //19

} //20

A Jeannie file starts like a regular Java file with an optional package (Line 1) and imports
(Line 2). These are followed by top-level C declarations enclosed in ‘.C{ } (Lines 3-5).
They usually come from header files, as in the example, but you can also declare your own
C functions and types in this section. The rest of the Jeannie file is structured like a regular
Java file, with an optional package (Line 4), imports (Line 5), and one (Line 6) or more
(Line 11) top-level classes or interfaces. The example illustrates how you might write a
wrapper for parts of the C standard library, hence the package is called cstdlib (Line 4).

In Jeannie, a native method has a body, which must be a block of C code (Line 7).
Inside of the C code, you can use backticked C types (such as ‘double on Line 8) that are
equivalent to the corresponding Java types (e.g., double). You can also use nested Java
expressions, for example, to refer to Java variables and parameters (such as ‘x and ‘y on
Line 8).

To build this example, run the Jeannie compiler like this:
(bash) jeannie.sh -lm cstdlib/Main.jni

Chapter 2: Examples 6

The -lm linker flag is passed on to the native C compiler, which uses it to link the m library
(math) into the generated native shared object file. After compiling, the package directory
cstdlib will contain class files for the top-level classes Math and Main, a shared library,
and some compiler intermediate files. You can run the program like this:

(bash) java -cp . -Djava.library.path=./cstdlib cstdlib.Main
d 72.31742029971468 r 4.166272210190459 ^3 72.31742029971466
d 99.08988967772393 r 4.627464705142208 ^3 99.08988967772387
d 25.329310557439133 r 2.9368005732853377 ^3 25.32931055743913

The program should print a series of numbers with their cubic roots as shown above. You
can simplify the command line by putting the shared library on your PATH or LD_LIBRARY_
PATH.

The example illustrates how Jeannie toggles between the languages for a block, for an
expression, or for a Java type name. In each case, you can use either the simple language
toggle backtick (‘), or the qualified form (‘.C or ‘.Java). Language toggle is also allowed
for certain Java statements in C (synchronized, try, throw), and for putting a throws
clause on a C function. See Section 3.2.1 [Syntax], page 18, which shows the entire Jeannie
grammar.

2.2 Locals

The following example (integration test 040) illustrates code with multiple local variables,
both in Java (args, input, and hasDecimalPoint) and in C (intOrFloat, f, and i).

‘.C { } // 1
class Main { // 2
public static void main(String[] args) { // 3
String input = "12.34E1"; // 4
boolean hasDecimalPoint = -1 != input.indexOf(’.’); // 5
‘.C { // 6
‘Number intOrFloat; // 7
if (‘hasDecimalPoint) { // 8
‘Float f = ‘Float.valueOf(input); // 9
intOrFloat = f; //10

} else { //11
‘Integer i = ‘Integer.valueOf(input); //12
intOrFloat = i; //13

} //14
‘.Java { //15
System.out.println(‘intOrFloat); //16

} //17
} //18

} //19
} //20

You can run the program like this:
(bash) jeannie.sh Main.jni
(bash) java -cp . Main
123.4

Chapter 2: Examples 7

Each local variable in Jeannie has a defining language (Java or C), a scope (a portion of
the program text where it is valid), and a type. The following table characterizes the local
variables from the example:

Java String[] args 3-18
Java String input 4-18
Java boolean hasDecimalPoint 5-18
C ‘Number intOrFloat 7-17
C ‘Float f 9-10
C ‘Integer i 12-13

In Jeannie, you can only access a local variable in code of the same language. For example,
Line 8 contains a C if statement, and must therefore toggle to Java to access the Java
local variable hasDecimalPoint. And of course, you can only access a local variable if it
is in scope; for example, the scope of intOrFloat ends in Line 17, so the variable can not
be used after that. Like in Java and C, scopes can nest, and variables in inner scopes can
shadow variables of the same name from outer scopes. Backticked expressions in Jeannie
are immutable (in programming languages terminology, they are not l-values, since they
can not appear on the left-hand side of an assignment). That means that any modification
to a variable has to occur in the variable’s language.

This example also illustrates that C local variables can hold references to Java objects.
For example, the result of ‘Float.valueOf(..) in Line 9 is a reference to a Java object
containing a boxed floating point number. This reference gets stored in the C local variable
f. Note that this variable has type ‘Float. In Jeannie, a backticked Java type is a C type.
Furthermore, since class Float is a subclass of Number in Java, Jeannie permits the C code
in Line 10 to widen the reference in the assignment intOrFloat = i. On the other hand, if
the code were to contain the reverse assignment i = intOrFloat, the compiler would give
an error message. You should try it out.

2.3 Garbage collection

Do not store references to Java objects in non-local C data. Non-local data is any data
that is not in local variables, and thus, does not go away when the enclosing function
or method returns. In other words, non-local data in C resides in global variables or on
the heap. You should not store any references to Java objects there, because by the time
you access them again, the objects may have already been garbage collected. When that
happens, the reference is a dangling reference, and using it can cause a crash, or worse, can
corrupt important data. In fact, on some JVMs, the reference is unusable even without
garbage collection, which make the problem easier to diagnose, because the program fails
more quickly and deterministically.

Instead, you should store references to Java objects into Java static or instance fields.
Jeannie makes it very easy to access a Java field from C by using a backtick. The following
example illustrates the difference between storing reference to a Java object in a C global
variable versus a Java static field.

import java.io.PrintWriter; // 1
‘.C { // 2
‘PrintWriter badGlob; // 3
} // 4

Chapter 2: Examples 8

class Main { // 5
static PrintWriter goodGlob; // 6
static native void setGlob(boolean beGood, PrintWriter init) ‘{ // 7
if (‘beGood) ‘(Main.goodGlob = init); // 8
else badGlob = ‘init; // 9

} //10
static native PrintWriter getGlob(boolean beGood) ‘{ //11
if (‘beGood) return ‘Main.goodGlob; //12
else return badGlob; //13

} //14
static native void useGlob(boolean beGood, Object obj) ‘{ //15
‘.Java { //16
PrintWriter out = Main.getGlob(beGood); //17
out.println(obj); //18
out.flush(); //19

} //20
} //21
public static void main(String[] args) { //22
boolean beGood = true; //23
setGlob(beGood, new PrintWriter(System.out)); //24
for (int i=0; i<3; i++) { //25
useGlob(beGood, "o_" + i); //26
System.gc(); //27

} //28
} //29

} //30

If you run this program unchanged, it uses a Java static field, if you change Line 23 to
set beGood = false, it uses a C global variable. In the good case, it prints o_0 o_1 o_2,
otherwise, it crashes with an error message that depends on your Java virtual machine,
operating system, and C compiler. You should try it out, so you can recognize the error if
you see the symptom again in another context. You should also try whether the symptom
goes away if you delete Line 27.

If you do make a mistake related to global references, you may end up needing a debugger
to find the source of the defect; see Section 2.7 [Debugging], page 14.

2.4 Arrays

This section is about how C code can access Java arrays. Arrays are important for Jeannie,
since people frequently use native code either for I/O, which usually involves buffers, or
for high-performance computing, which usually involves matrix computations. Just like
any other Java expression can be nested in C using a backtick, so can Java expressions
that access an array. C code can read from a Java array using a Java array subscript, for
instance, ‘arr[i]. C code can write to a Java array using a Java assignment, for instance,
‘(arr[i] = v). Since backticked expressions in Jeannie are immutable, a C assignment to
a Java array (e.g., ‘arr[i] = v) would be illegal.

The following example (integration test 043) shows a native method replace(chars,
oldC, newC) that modifies the Java array chars, replacing the first occurrence of oldC in

Chapter 2: Examples 9

chars by newC. It returns the index of the replaced element, or -1 if the element was not
found.

‘.C{ } // 1
class Main { // 2
static native int replace(char[] chars, char oldC, char newC) ‘{ // 3
for (int i=0; i<‘chars.length; i++) { // 4
if (‘oldC == ‘chars[‘i]) { // 5
‘(chars[‘i] = newC); // 6
return (‘int)i; // 7

} // 8
} // 9
return (‘int)-1; //10

} //11
public static void main(String []args) { //12
char[] a = { ’a’, ’b’, ’c’ }; //13
int r; //14
r = replace(a, ’b’, ’d’); //15
System.out.println(r + " " + new String(a)); //16
r = replace(a, ’b’, ’d’); //17
System.out.println(r + " " + new String(a)); //18

} //19
} //20

The example also includes a main method that invokes replace twice to replace ’b’ by
’d’. You can compile and run the program like this:

(bash) jeannie.sh Main.jni
(bash) java -cp . Main
1 adc
-1 adc

The output shows that the first call to replace changed the element at index 1, yielding
adc, whereas the second call did not find any element to change and therefore returned -1,
leaving the array unchanged as adc.

Accessing arrays with simple backticked Java expressions is convenient. But users may
want to use Java arrays in performance-critical loops, where the transition between lan-
guages can become a bottle-neck. To accommodate faster access to an entire Java array,
Jeannie provides the with-statement. The header of a with-statement associates a C vari-
able with a Java array; for example, with(‘char* s = ‘chars) { .. } associates the C
variable s with the Java array chars. The body of the with statement can use that C
variable as a normal C array. For example, the following code (integration test 044) imple-
ments the same replace method as before, but this time using a with-statement instead of
a simple array access. Notice that the body of the for-loop is pure C code without language
transitions.

‘.C{ } // 1
class Main { // 2
static native int replace(char[] chars, char oldC, char newC) ‘{ // 3
‘char old = ‘oldC, new = ‘newC; // 4

Chapter 2: Examples 10

‘int len = ‘chars.length; // 5
with (‘char* s = ‘chars) { // 6
for (int i=0; i<len; i++) { // 7
if (old == s[i]) { // 8
s[i] = new; // 9
return (‘int)i; //10

} //11
} //12
cancel s; //13

} //14
return (‘int)-1; //15

} //16
public static void main(String []args) { //17
char[] a = { ’a’, ’b’, ’c’ }; //18
int r; //19
r = replace(a, ’b’, ’d’); //20
System.out.println(r + " " + new String(a)); //21
r = replace(a, ’b’, ’d’); //22
System.out.println(r + " " + new String(a)); //23

} //24
} //25

The main-method is unchanged, and this program should produce the same output as
the previous example. In general, the initializer of a with-statement can be a variable
declaration, like in the example, or an assignment. The types of the C variable and the
Java expression must match: if the C variable has type ‘E*, the Java expression must have
type jEArray.

Changes to the C array are reflected back to the Java array when control leaves the with
statement, unless the user decided to cancel the changes, or there was an exception. In
those cases, the Java array remains unchanged. In the example, Line 10 leaves the with-
statement and the method, at which time Jeannie makes any pending modifications to the
Java array chars. Line 13 also leaves the with-statement, but Jeannie drops any changes
that may have occurred in the array.

So far, this section has focused on cases where C code wants to work directly with
Java arrays. Jeannie supports that by simple nested Java expressions, and by the with
statement for bulk accesses. But there are other cases where C code wants to copy just (parts
of) an array between Java and C. Jeannie supports that with a pair of builtin functions
copyFromJava and copyToJava. They have the following signatures:

‘int copyFromJava(‘E* ca, ‘int ci, jEArray ja, ‘int ji, ‘int len)
‘int copyToJava(jEArray ja, ‘int ji, ‘E* ca, ‘int ci, ‘int len)

In both cases, the return value is the number of copied elements. In both cases, the pa-
rameter list starts with the destination array and start index, followed by the source array
and start index, followed by the number of elements to be copied. The following example
(integration test 045) reimplements our familiar replace method using the trans-lingual
copy functions.

‘.C{ } // 1

Chapter 2: Examples 11

class Main { // 2
static native int replace(char[] chars, char oldC, char newC) ‘{ // 3
‘char old = ‘oldC, new = ‘newC; // 4
‘int len = ‘chars.length; // 5
‘char s[len]; // 6
copyFromJava(s, 0, ‘chars, 0, len); // 7
for (int i=0; i<len; i++) { // 8
if (old == s[i]) { // 9
s[i] = new; //10
copyToJava(‘chars, 0, s, 0, len); //11
return (‘int)i; //12

} //13
} //14
return (‘int)-1; //15

} //16
public static void main(String []args) { //17
char[] a = { ’a’, ’b’, ’c’ }; //18
int r; //19
r = replace(a, ’b’, ’d’); //20
System.out.println(r + " " + new String(a)); //21
r = replace(a, ’b’, ’d’); //22
System.out.println(r + " " + new String(a)); //23

} //24
} //25

Again, the main method is unchanged, and the console output is the same as in the previous
two examples. See Section 3.3.1 [copyFromJava], page 25 and Section 3.3.2 [copyToJava],
page 25 for reference documentation on the two functions.

2.5 Abrupt control flow

Control flow is the order in which code executes. Normal control flow occurs when state-
ments execute in the order in which they appear in the program, as well as when code has
conditionals, loops, and calls. Abrupt control flow occurs when control jumps suddenly, for
example because of a return statement in the middle of a function or method. Jeannie
supports all the abrupt control flow constructs of Java and C (return, break, continue,
goto, implicit exceptions, and explicit throw) and two new abrupt control flow constructs
for bulk array manipulation (commit, cancel).

You can use Jeannie to obtain Java exception handling for C code. To throw a Java
exception from C, use a nested Java throw statement. To handle a Java exception from C,
use nested C handlers in a Java try/catch/finally statement. Jeannie implements the
expected abrupt control flow. It also takes care of releasing internal resources. For example,
a Jeannie with statement can allocate a temporal C array to cache Java data; if there is an
exception during the with statement, Jeannie releases the temporary array.

The following example (integration test 046) illustrates abrupt control flow in Jeannie.

‘.C { // 1
#include <stdio.h> // 2

Chapter 2: Examples 12

} // 3
class Main { // 4
public static void main(String[] args) { // 5
int[] ja = { 1, 2, 3, 0 }; // 6
‘.C { // 7
FILE* out; // 8
‘try ‘{ // 9
out = fopen("out.txt", "w"); //10
with (‘int* ca = ‘ja) { //11
for (‘int i=0; i<4; i++) { //12
if (ca[i] == 0) //13
‘throw new ArithmeticException("/ by 0"); //14

ca[i] = 10 / ca[i]; //15
fprintf(out, "ca[%ld] == %ld\n", i, ca[i]); //16

} //17
} //18

} catch (ArithmeticException e) ‘{ //19
fprintf(out, "division by zero\n"); //20

} finally ‘{ //21
fclose(out); //22

} //23
} //24
for (int i=0; i<4; i++) //25
System.out.println("ja[" + i + "] == " + ja[i]); //26

} //27
} //28

The C code divides 10 by every number in an array, and writes the results to a file out.txt.
At the end, the Java code writes the array contents to the console. When you compile and
run this program, you should see the following:

(bash) jeannie.sh Main.jni
(bash) java -cp . Main
ja[0] == 1
ja[1] == 2
ja[2] == 3
ja[3] == 0
(bash) cat out.txt
ca[0] == 10
ca[1] == 5
ca[2] == 3
division by zero

The C code in Lines 7 thru 24 operates on a file out. Line 10 opens the file for writing,
and Line 22 closes it again. To guarantee that the file gets closed no matter what happens,
Line 10 is in a try-block and Line 22 is in the associated finally-block.

The C code in Lines 11 thru 18 operates on a C version ca of the Java array ja. Line
15 modifies the C array, and Line 16 prints the modification to the file. The original array
from Line 6 is {1,2,3,0}, and Line 15 modifies it to {10/1,10/2,10/3,..}, yielding the

Chapter 2: Examples 13

result {10,5,3,..}. However, when the loop reaches the array element 0, Line 14 throws
an exception to prevent division by zero. In Jeannie, an exception in a with statement
cancels the modifications to the Java array. Therefore, when Lines 25 and 26 print ja, they
observe the original contents from Line 6, namely {1,2,3,0}.

Jeannie does not permit break, continue, or goto to cross the language boundary or
to leave a with statement, since that would yield to ill-defined behavior.

2.6 Strings

Jeannie supports access from C code to Java strings similarly to its support for arrays, with
three important differences:
• C code can not copy elements to Java strings, since they are immutable.
• C code can access either Java’s UTF-16 encoding of strings, or a UTF-8 encoding.
• The builtin functions newJavaString and stringUTFLength facilitate common string

processing tasks.

The following example (integration test 047) demonstrates Jeannie’s string manipulation
features. Class cstdlib.StdIO is a simple wrapper for the functions fputs and fflush
from the C stdio library, and class cstdlib.TestDriver exercises the code.

package cstdlib; // 1
import java.io.IOException; // 2
‘.C { // 3
#include <stdio.h> // 4
#include <errno.h> // 5
#include <string.h> // 6
} // 7
class StdIO { // 8
public static native int stdOut() ‘{ // 9
return (‘int)stdout; //10

} //11
public static native void //12
fputs(String s, int stream) throws IOException ‘{ //13
‘int len = stringUTFLength(‘s); //14
‘byte cs[1 + len]; //15
int result; //16
copyFromJava(cs, 0, ‘s, 0, ‘s.length()); //17
cs[len] = ’\0’; //18
result = fputs((char*)cs, (FILE*)‘stream); //19
if (EOF == result) //20
‘throw new IOException(‘newJavaString(strerror(errno))); //21

} //22
public static native void //23
fflush(int stream) throws IOException ‘{ //24
int result = fflush((FILE*)‘stream); //25
if (EOF == result) //26
‘throw new IOException(‘newJavaString(strerror(errno))); //27

} //28

Chapter 2: Examples 14

} //29
public class Main { //30
public static void main(String[] args) throws IOException { //31
StdIO.fputs("Schöne Grüße!\n", StdIO.stdOut()); //32
StdIO.fflush(StdIO.stdOut()); //33

} //34
} //35

You can compile and run this program as follows:

(bash) jeannie.sh cstdlib/Main.jni
(bash) java -cp . -Djava.library.path=cstdlib cstdlib.Main
Sch\313\206ne Gr\302\270\357\254\202e!

Line 17 uses the builtin function copyFromJava to copy the Java string s to the C array
cs. Here, this function behaves slightly differently from when we saw it in Section 2.4
[Arrays], page 8. Since the target of the copy is an array not of ‘char but of ‘byte, Line 17
performs a conversion from UTF-16 to UTF-8 encoding for unicode. In this example, the
input string is "Schöne Grüße!\n" (“Nice greetings!” in German), which has 14 characters,
including the Umlauts ö, ü, and ß. These special symbols take only 1 UTF-16 character
each, but multiple UTF-8 bytes, hence the length of the resulting string "Sch\313\206ne
Gr\302\270\357\254\202e!" is 18. Jeannie provides a function stringUTFLength that
you can use to find out the number of bytes that a UTF-8 string will need before you make
the conversion from UTF-16. In the example, Line 14 calls stringUTFLength, and Line 15
uses the result to stack-allocate a buffer for the C string. Note that the buffer has one more
byte, used to zero-terminate the string in Line 18 as expected by the C language.

Lines 20 and 21 perform error handling. If the call to the C function fputs in Line 19
failed, it returns EOF to indicate that something went wrong. In that case, errno contains
a numerical error code, and strerror(errno) describes the error as a C string. Line 21
converts that C string to a Java string with the Jeannie builtin function newJavaString,
and then throws an IOException.

Besides the functions copyFromJava, stringUTFLength, and newJavaString illustrated
in this example, Jeannie also supports strings in with statements. Since Java strings are
immutable, you can not modify a Java string with a with statement either: it always
implicitly cancels.

2.7 Debugging

We are actively working on a Jeannie debugger. In the meantime, we rec-
ommend you use gdb, following these instructions by Matthew White:
http://www.ibm.com/developerworks/java/library/j-jnidebug/index.html.
Here is a short summary of Matthew White’s approach. Essentially, you need to run the
compiler with -g and the Java virtual machine with -Xrunjdwp. Then, you need to attach
jdb and gdb to the running Java virtual machine. Then, at any given point, the system is
in one of three states:

JVM active, and both jdb and gdb inert
The Java virtual machine is active executing Java code, and both debuggers
(jdb and gdb) are inert. This continues until either one of the debuggers hits a

http://www.ibm.com/developerworks/java/library/j-jnidebug/index.html

Chapter 2: Examples 15

breakpoint, or there is a segmentation fault that activates gdb, or the program
terminates.

gdb active, and both JVM and jdb inert
The C debugger is active, allowing you to interact with it using debugging
commands such as single-stepping, inspecting the C stack backtrace, inspecting
C variable values, or setting C breakpoints. The JVM is suspended, and the
Java debugger is inert. To get back into the first state (JVM active), ask the
debugger to let the program continue.

jdb active, and both JVM and gdb inert
The Java debugger is active, allowing you to interact with it using debugging
commands such as single-stepping, inspecting the Java stack backtrace, inspect-
ing Java variable values, or setting Java breakpoints. The JVM is suspended,
and the C debugger is inert. To get back into the first state (JVM active), ask
the debugger to let the program continue.

Consider the following buggy Jeannie program (integration test 048):
‘.C { // 1
int decr(int x) { // 2
int y; // 3
x--; // 4
if (x != 0) // 5
y = x; // 6

return y; // 7
} // 8
} // 9
class Main { //10
public static void main(String[] args) { //11
int z = 1; //12
z = ‘decr(‘z); //13
System.err.println(z); //14

} //15
} //16

Since function f is called with x==1, the variable y is not initialized when Line 7 returns it.
Thus, the uninitialized value taints variable z on Line 13, and Line 14 prints it. Below is
an example debugging session, following Matthew White’s approach. The session actually
takes place in three different terminals, we interleave it here in chronological order for clarity.
Lines marked with * contain user input.

-------- JVM terminal --------
* (bash) jeannie.sh -g Main.jni
* (bash) java -cp . -Xdebug -Xnoagent -Djava.compiler=none \
* -Xrunjdwp:transport=dt_socket,server=y,suspend=y Main
Listening for transport dt_socket at address: 50067

-------- jdb terminal --------
* (bash) jdb -attach 50067
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable

Chapter 2: Examples 16

Initializing jdb ...
VM Started: No frames on the current call stack

* main[1] stop in Main.main
Deferring breakpoint Main.main.
It will be set after the class is loaded.

* main[1] run
> Set deferred breakpoint Main.main
Breakpoint hit: "thread=main", Main.main(), line=11 bci=0
11 public static void main(String[] args) { //11

-------- gdb terminal --------
* (bash) ps -A | grep java | grep -v grep
5980 p1 S+ 0:00.16 java -cp . -Xdebug -Xnoagent -Djava.compiler=...

* (bash) gdb -quiet java 5980
Attaching to program: ‘/usr/bin/java’, process 5980.
Reading symbols for shared libraries done
0x90009cd7 in mach_msg_trap ()

* (gdb) break Main.jni:4
Breakpoint 1 at 0x25e0d5f: file /Users/hirzel/tmp/Main.jni, line 4.

* (gdb) cont
Continuing.
[Switching to process 5980 thread 0xc07]

-------- jdb terminal --------
* main[1] cont
-------- gdb terminal --------
Breakpoint 1, decr (x=1) at /Users/hirzel/tmp/Main.jni:4
4 x--; // 4

* (gdb) print y
$1 = 39718276

* (gdb) cont
Continuing.

-------- JVM terminal --------
39718276

-------- jdb terminal --------
The application exited

-------- gdb terminal --------
Program exited normally.

Chapter 3: Reference 17

3 Reference

Use this section to look up descriptions of Jeannie features, builtin functions, and tools.

3.1 Quick reference

Features

File = [Java.Package] Java.Imports ‘.C { C.Declarations } Java.TypeDecls
A Jeannie file is a Java file starting with a block of C declarations.

Java.NT += . . . / (‘ / ‘.C) C.NT
C blocks or expressions can be nested in Java code using backticks.

C.NT += . . . / (‘ / ‘.Java) Java.NT
Java blocks or expressions can be nested in C code using backticks.

C.TypeSpecifier += . . . / (‘ / ‘.Java) Java.Type
A backticked Java type name can serve as a C type specifier.

C.Statement += . . . / _with ((C.Assignment / C.Declaration)) C.Block
A with statement provides bulk access to a Java string or array.

C.Statement += . . . / _cancel C.Identifier ; / _commit C.Identifier ;
Cancel or commit end the with statement for the C variable name.

Builtin functions

‘int _copyFromJava(CT ca, ‘int ci, JT ja, ‘int ji, ‘int len)
Copy string or array elements from Java to C.

‘int _copyToJava(JT ja, ‘int ji, CT ca, ‘int ci, ‘int len)
Copy array elements from C to Java.

‘String _newJavaString(const CT ca)
Create a new Java string from C.

‘int _stringUTFLength(‘String js [, ‘int ji, ‘int len])
Count length of Java string in UTF-8 representation.

Tools

jeannie.sh [options] file [c-files...]
Master script. Creates dynamically linked library and class files.

java xtc.lang.jeannie.Preprocessor [options] file
Inject Jeannie-specific definitions. Output goes to stdout.

java xtc.lang.jeannie.Jeannie [-analyze | -translate | . . .] file
Translate preprocessed Jeannie source code to Java and C source.

java xtc.lang.ClassfileSourceRemapper [options] source-file class-file
Add debugging symbols to classes. Rewrites the class-file.

Chapter 3: Reference 18

3.2 Language features

This section discusses the syntax and semantics of Jeannie, first in summary and then
individually by feature.

3.2.1 Syntax

Below is the Jeannie grammar. It has four groups of productions: the start symbol, mod-
ifications to the Java and C grammars, and additions to the C grammar. Each grammar
production consists of a non-terminal, followed by “=”, “+=”, or “:=”, followed by a parsing
expression. For example, the production for the start symbol

File = [Java.Package] Java.Imports ‘.C { C.Declarations } Java.TypeDecls

specifies that the non-terminal File recognizes an optional package declaration, import
declarations, some initial C.Declarations enclosed in a ‘.C{. . .} block, and finally top-level
Java class and interface declarations. Each grammar production is followed by an example
expansion. In the case of File, the example expansion is
7→ ‘.C { #include <stdio.h> } class A { }

Productions with “+=” modify the grammar of one of the two base languages with the
grammar modification facilities of Rats!. For example,

Java.Block += . . . / CInJava C.Block

modifies the Java grammar: the non-terminal Java.Block, in addition (+=) to recognizing
Java blocks (. . .), now recognizes a backtick (CInJava) followed by a C block (C.Block).
As another example the rule

C.FunctionDeclarator := C.DirectDeclarator (C.ParameterDeclaration)
[JavaInC Java.ThrowsClause]

modifies the C grammar: the non-terminal C.FunctionDeclarator, instead of (:=) recog-
nizing just a C function declarator, now recognizes a C function declarator followed by an
optional backtick and Java throws clause.

Start symbol

File = [Java.Package] Java.Imports ‘.C { C.Declarations } Java.TypeDecls
7→ ‘.C { #include <stdio.h> } class A { }

Modifications to Java grammar

Java.Block += . . . / CInJava C.Block
7→ ‘{ int x = 42; printf("%d", x); }

Java.UnaryExpression += . . . / CInJava C.UnaryExpression
7→ ‘((jboolean)feof(stdin))

CInJava = ‘.C / ‘
7→ ‘.C

Modifications to C grammar

C.Block += . . . / JavaInC Java.Block
7→ ‘{ int x=42; System.out.println(x); }

C.UnaryExpression += . . . / JavaInC Java.UnaryExpression
7→ ‘new HashMap();

Chapter 3: Reference 19

C.TypeSpecifier += . . . / JavaInC Java.Type
7→ ‘java.util.Map

C.FunctionDeclarator := C.DirectDeclarator (C.ParameterDeclaration)

[JavaInC Java.ThrowsClause]
7→ f(char *s) ‘throws IOException

C.Statement += . . .
/ JavaInC Java.SynchronizedStatement

7→ ‘synchronized(act) { act.deposit(); }

/ JavaInC Java.TryStatement
7→ ‘try { f(); } catch (Exception e) { h(e); }

/ JavaInC Java.ThrowStatement
7→ ‘throw new Exception("boo");

JavaInC = ‘.Java / ‘
7→ ‘.Java

Additions to C grammar

C.Statement += . . .
/ _with (WithInitializer) C.Block

7→ _with (‘int* ca = ‘ja) { sendMsg(ca); }

/ _cancel C.Identifier ;
7→ _cancel ca;

/ _commit C.Identifier ;
7→ _commit ca;

WithInitializer =
C.AssignmentExpression

7→ msg->data = ‘ja

/ C.Declaration
7→ ‘int* ca = ‘v.toArray()

3.2.2 Type equivalences

Jeannie introduces new C types for every Java primitive, class, or interface type. If JT is
a Java type name, then ‘JT is a C type. For example, ‘int is a signed 32-bit C integer
type, and ‘java.io.IOException is the type for opaque C references to Java IOException
objects.

Jeannie defines several type equivalences between Java and C types, denoted as
JT ≡ CT. When a Java expression is nested in C code, Jeannie type-checks the C code as
if the Java expression had the equivalent C type. Likewise, when a C expression is nested
in Java code, Jeannie type-checks the Java code as if the C expression had the equivalent
Java type. Of course, each Java primitive, class, or interface type is equivalent to the same
type with backtick in C. For example:

int ≡ ‘int
java.io.IOException ≡ ‘java.io.IOException

Chapter 3: Reference 20

java.util.Iterator ≡ ‘java.util.Iterator

Jeannie has the same rules for resolving simple type names to fully qualified names as Java.
For example, C code in Jeannie can use ‘IOException for ‘java.io.IOException if the
current file is part of package java.io or if it has the appropriate import declaration.

In addition to backticked Java types in C, Jeannie also honors type equivalences between
Java and C types from jni.h. The most important ones are arrays:

boolean[] ≡ jbooleanArray
byte[] ≡ jbyteArray
char[] ≡ jcharArray
short[] ≡ jshortArray
int[] ≡ jintArray
long[] ≡ jlongArray
float[] ≡ jfloatArray
double[] ≡ jdoubleArray
java.lang.Object[] ≡ jobjectArray

Other type equivalences from jni.h include primitive types and certain frequently used
classes and interfaces:

boolean ≡ jboolean
byte ≡ jbyte
char ≡ jchar
short ≡ jshort
int ≡ jint
long ≡ jlong
float ≡ jfloat
double ≡ jdouble
java.lang.Object ≡ jobject
java.lang.Class ≡ jclass
java.lang.String ≡ jstring
java.lang.Throwable ≡ jthrowable

C pointers, structs, and unions have no equivalent in Java, and the Jeannie compiler flags
an error when a program attempts to use them in Java code.

3.2.3 C in Java

Name C in Java – C block or C expression nested in Java code.

Syntax rules
Java.Block += . . . / CInJava C.Block
Java.UnaryExpression += . . . / CInJava C.UnaryExpression
CInJava = ‘.C / ‘

Syntax notes
An example for a C block in Java is ‘{ int x = 42; printf("%d", x); }.

An example for a C expression in Java is ‘((jboolean)feof(stdin)).

When used in an expression, the backtick (‘ or ‘.C) has the same precedence
as other unary prefix operators such as logical negation (!).

Chapter 3: Reference 21

Dynamic semantics
The dynamic semantics of nested C code are mostly just the dynamic semantics
of C. All C code in the same activation of a function or method observes the
same state, so when nested blocks or expressions have side effects, those effects
are visible to other code, as expected. It is a programmer mistake to keep
a reference to a Java object into a C global variable or the C heap after the
current function or method returns. If a Java exception occurs in the nested C
code, control abruptly leaves the nested C code and propagates to the nearest
Java exception handler, following the dynamic semantics of Java. Java code
that contains a nested C expression uses the result of that C expression as an
r-value of the corresponding Java type.

Static semantics
The static semantics of nested C code are mostly just the static semantics of
C. For instance, Jeannie resolves C functions to their prototypes, which are
typically declared in header files included at the beginning of a Jeannie file.
If name lookup fails or the C code is incorrectly typed, the Jeannie compiler
reports an error.
When a C expression is nested in Java code, Jeannie type-checks the Java code
as if the C expression had the equivalent Java type, as specified in Section 3.2.2
[Type equivalences], page 19. It is a compile time error when a C expression
nested in Java evaluates to a pointer, struct, or union, since those have no
equivalent in Java. Jeannie also checks that the Java code treats the value of
the C expression as an r-value, and in particular, does not assign to it. When
a C return statement returns from a Java method, Jeannie type-checks the
return value against the return type of the method as if it had the equivalent
Java type.
C assignments, variable initializers, function invocations, and return state-
ments can implicitly widen opaque references to Java classes or interfaces. For
example, C code can assign a reference of type ‘java.util.HashMap to a vari-
able of type ‘java.util.Map, because class HashMap implements interface Map.
Native methods of a Java class must have a body and that body must be
a backticked C block. Native methods also declare an implicit C parameter
JNIEnv* env, so that C code has access to JNI’s API. Consequently, explicit
parameters of native methods cannot have the name env. Jeannie provides this
feature to facilitate incremental conversion of JNI code to Jeannie; other uses
of this feature are discouraged.
If nested C code contains any break, continue, or goto statements, those must
not cross the language boundary, and they also must not cross the boundary of
a with statement.

3.2.4 Java in C

Name Java in C – Java block, expression, or other code nested in C code.

Syntax rules
C.Block += . . . / JavaInC Java.Block
C.UnaryExpression += . . . / JavaInC Java.UnaryExpression

Chapter 3: Reference 22

C.TypeSpecifier += . . . / JavaInC Java.Type
C.Statement += . . .

/ JavaInC Java.SynchronizedStatement
/ JavaInC Java.TryStatement
/ JavaInC Java.ThrowStatement

C.FunctionDeclarator := C.DirectDeclarator
(C.ParameterDeclaration)
[JavaInC Java.ThrowsClause]

JavaInC = ‘.Java / ‘

Syntax notes
An example for a Java block in C is ‘{ int x=42; System.out.println(x); }.
An example for a Java expression in C is ‘new HashMap();.
An example for a Java type name in C is ‘java.util.Map. It may be part of
a C variable declaration such as const ‘java.util.Map m = ...;.
An example for a Java statement in C is ‘throw new Exception("boo");.
An example for a C function declarator with a Java throws clause is
f(char *s) ‘throws IOException.
When used in an expression, the backtick (‘ or ‘.C) has the same precedence
as other unary prefix operators such as logical negation (!).

Dynamic semantics
The dynamic semantics of nested Java code are mostly just the dynamic seman-
tics of Java. The semantics of exceptions and locks extend from Java across C
code; for example, when an exception abruptly leaves a synchronized statement,
the corresponding lock is released. All Java code in the same activation of a
function or method observes the same state, so when nested Java code has side
effects, those effects are visible to other code, as expected.
C code that contains a nested Java expression uses the result of that Java ex-
pression as an r-value of the corresponding C type. As specified in Section 3.2.2
[Type equivalences], page 19, the corresponding C type may be a backticked
Java primitive, class, or interface type. If a nested Java expression yields a
reference to a Java object, that object will not be garbage collected until at
least the enclosing function or method returns. In the terminology of JNI, it
constitutes a local reference.

Static semantics
The static semantics of nested Java code are mostly just the static semantics
of Java. For instance, Jeannie resolves Java class names relative to imports. It
also verifies that all checked exceptions are either caught locally or declared as
thrown by the enclosing function or method. Furthermore, Jeannie checks that
Java members are in fact accessible, i.e., that references to fields, methods, and
member types obey their visibility (private, protected, public, or default).
When a Java expression is nested in C code, Jeannie type-checks the C code
as if the Java expression had the equivalent C type, see Section 3.2.2 [Type
equivalences], page 19. Jeannie also checks that the C code treats the value of
the Java expression as an r-value, and in particular, does not assign to it. When

Chapter 3: Reference 23

a Java return statement returns from a C function, Jeannie type-checks the
return value against the return type of the function as if it had the equivalent
C type.
In order to contain nested Java code, the enclosing C code must be either
part of a Java method, or must be in a C function that declares an explicit
formal parameter JNIEnv* env. The env variable can also be used to facilitate
incremental conversion of JNI code to Jeannie; other uses of this feature are
discouraged.
If nested Java code contains any break or continue statements, those must not
cross the language boundary, neither must they cross the boundary of a with
statement.

3.2.5 with

Name _with – Access entire Java array or string from C.

Syntax rules
C.Statement += . . . / _with (WithInitializer) C.Block
WithInitializer = C.AssignmentExpression / C.Declaration

Syntax notes
You can also write the keyword (_with) without a leading underscore (with).
The leading underscore is mandatory only if you run the Jeannie compiler with
the -underscores command line option.
An example for a with statement is with (‘int* ca = ‘ja) { sendMsg(ca); }.
An example for a C assignment expression is msg->data = ‘ja.
An example for a C declaration is ‘int* ca = ‘v.toArray().

Dynamic semantics
Jeannie’s with statement accesses a Java string or array from C code like a C
array in a well-defined scope. For example,

_with (‘int* ca = ‘ja) {
for (‘int i=0, n=‘ja.length; i<n; i++)
s += ca[i];

}

acquires a copy of Java array ja’s contents, sums up its elements, and then
releases the copy while also copying back the contents. In the example, array
ja is released when control reaches the end of the block. In general, the Java
string or array is released when control leaves the body of the with statement
for any reason, including return statements and exceptions. In the case of
an exception, all modifications to the array are canceled, in other words, the
original Java array is unmodified. When there is no exception, any changes to
the C array are copied back into the Java array.
If the Java string or array is null, the with statement signals a
NullPointerException. Otherwise, it initializes the C array to point to a
copy of the Java array. Strings are UTF-8 encoded if the C array is of type
‘byte*, and UTF-16 encoded if the C array is of type ‘char*. Independent of
encoding, modifying a string leads to undefined behavior.

Chapter 3: Reference 24

Static semantics
The WithInitializer must be either a simple assignment to a C pointer variable,
or a declaration of a C pointer variable. For the purpose of this discussion, let
ca be the name of the C pointer variable, and let ja refer to the Java string or
array on the right hand side of the WithInitializer. In the assignment case, ca
must be modifiable, i.e., not const.

Let CT be the type of ca, and JT the type of ja. If ja is an array, then JT is
jEArray for some element type E, and CT must be ‘E*, for the same E. For
example, if JT is jintArray, then E is int, and CT must be ‘int*. If ja is a
string, then JT is ‘String, and CT must be either ‘byte* or ‘char*.

3.2.6 cancel and commit

Name _cancel / _commit – Release a Java array and discard / preserve changes.

Syntax rules
C.Statement += . . .

/ _cancel C.Identifier ;
/ _commit C.Identifier ;

Syntax notes
You can also write the keyword (_cancel or _commit) without a leading un-
derscore (cancel or commit). The leading underscore is mandatory only if you
run the Jeannie compiler with the -underscores command line option.

An example for a cancel statement is _cancel ca;.

An example for a commit statement is _commit ca;.

Dynamic semantics
The commit and cancel statements initiate an abrupt control transfer to the
code immediately following the with statement that initializes the named C
pointer variable. A commit statement copies any changes back into the Java
array, whereas cancel discards them. Both commit and abort release any
resources necessary for implementing the with statement, notably the copy’s
memory.

Static semantics
The identifier must be the formal of a directly enclosing with statement.

3.3 Builtin functions

This section describes special C functions built into Jeannie. Builtin functions are recognized
by the Jeannie compiler, which analyzes them and translates them specially. For example,
the compiler enforces special constraints when it analyzes a builtin, such as matching a C
buffer type to a Java array type.

You can write all of these builtins either with or without a leading underscore (e.g.,
copyFromJava vs. _copyFromJava). The leading underscore is mandatory only if you run
the Jeannie compiler with the -underscores command line option.

Chapter 3: Reference 25

3.3.1 copyFromJava

Name _copyFromJava – Copy string or array elements from Java to C.

Signature
‘int _copyFromJava(CT ca, ‘int ci, JT ja, ‘int ji, ‘int len)

Description
Copy from ja[ji. . .ji+len-1] to ca[ci. . .], and return the number of ele-
ments copied into ca.
If ja is an array, then JT is jEArray for some element type E, and CT must
be ‘E*, for the same E. For example, if JT is jintArray, then E is int, and
CT must be ‘int*.
If ja is a string, then JT is ‘String, and CT must be either ‘byte* or ‘char*.
If CT is ‘byte*, then the copy involves a conversion from UTF-16 to UTF-8.
This conversion may cause the return value (number of elements copied into
ca) to differ from the len parameter (number of elements copied out of ja).

Parameters

CT ca C array that receives the copy.

‘int ci Index in the C array where the copy starts.

JT ja Java string or array from which the copy originates.

‘int ji Index in the Java string or array where the copy starts.

‘int len Number of copied elements from the Java string or array.

Returns ‘int – Number of elements copied into the C array ca.

Exceptions
If one of the indices in the Java string or array ja is invalid,
copyFromJava raises a StringIndexOutOfBoundsException or
ArrayIndexOutOfBoundsException. If one of the indices in the C
array ca is invalid, copyFromJava exhibits undefined behavior. To avoid
a buffer overrun related to unicode conversion (from a Java string to a C
‘byte*), you should call stringUTFLength before calling copyFromJava.

3.3.2 copyToJava

Name _copyToJava – Copy array elements from C to Java.

Signature
‘int _copyToJava(JT ja, ‘int ji, CT ca, ‘int ci, ‘int len)

Description
Copy from ca[ci. . .ci+len-1] to ja[ji. . .], and return the number of ele-
ments copied. The type JT must be jEArray for some element type E, and CT
must be ‘E*, for the same E. For example, if JT is jintArray, then E is int,
and CT must be ‘int*. The type JT must not be ‘String, because strings
are immutable in Java, and therefore, it does not make sense to copy elements
into them.

Chapter 3: Reference 26

Parameters

JT ja Java array that receives the copy.

‘int ji Index in the Java array where the copy starts.

CT ca C array from which the copy originates.

‘int ci Index in the C array where the copy starts.

‘int len Number of copied elements from the Java string or array.

Returns ‘int – Number of elements copied into the Java array ja.

Exceptions
If one of the indices in the Java array ja is invalid, copyToJava raises an
ArrayIndexOutOfBoundsException. If one of the indices in the C array ca is
invalid, copyToJava exhibits undefined behavior.

3.3.3 newJavaString

Name _newJavaString – Create a new Java string from C.

Signature
‘String _newJavaString(const CT ca)

Description
Create a new Java string with the same contents as the C array ca. The type
CT of the C array must be either ‘byte* or ‘char*. If CT is ‘byte*, then
the string creation involves a conversion from UTF-8 to UTF-16. In either case
(‘byte* or ‘char*), the C array must be null-terminated.

Parameters

CT ca C array from which to copy characters into the newly allocated
Java string.

Returns ‘String – Newly created Java string with the same contents as ca.

Exceptions
If the Java virtual machine does not have enough memory available to allocate
the Java string, then newJavaString raises an OutOfMemoryError.

3.3.4 stringUTFLength

Name _stringUTFLength – Count length of Java string in UTF-8 representation.

Signature
‘int _stringUTFLength(‘String js [, ‘int ji, ‘int len])

Description
Count how long the UTF-8 representation of the UTF-16 string js is. If the
optional parameters ji and len are specified, count how long the UTF-8 repre-
sentation of the substring js[ji. . .ji+len-1] is. You should use this function
to find out how large a C ‘byte* buffer you need when copying (parts of) Java
strings to C.

Chapter 3: Reference 27

Parameters

‘String js
Java string to measure.

‘int ji Start index of the region to measure.

‘int len Length in UTF-16 characters of the region to measure.

Returns ‘int – Length in UTF-8 characters.

Exceptions
None.

3.4 Tools

This section describes the command line tools for compiling Jeannie programs. In the
normal case, you should only need to use one of them: the “master script” jeannie.sh.
It orchestrates the other Jeannie tools (preprocessor, compiler, postprocessor) as well as
external tools (C and Java compilers).

3.4.1 jeannie.sh

Name jeannie.sh – Jeannie compiler master script.

Synopsis jeannie.sh [options] file [c-files...]

Parameters

options Options may be in any order. See Options below.

file Main source file to compile, usually with the extension .jni. The
file name should include the package directory. For example, if you
compile a class a.b.C, where a.b is the package name, the file name
should be a/b/C.ext. See also the -sourcepath option below.

c-files... Other files to compile and link with the C compiler (may be C
sources or objects). These are added into the dynamically linked
library created from the C part of the main source file.

Description
The jeannie.sh master script compiles a Jeannie source file into Java class
files and a dynamically linked library. It does this by calling other tools that

Chapter 3: Reference 28

transform the file through a number of stages. The following picture illustrates
this:

stem.classstem.class

c-filesc-files

stem.jni

stem.class

stem.java

stem.jni.i

stem.jni.pp

c-files

Jeannie preprocessor

C preprocessor

Java compiler

Jeannie compiler

stem.i

C compiler

libstem.so

Postprocessor

The jeannie.sh script first splits file (the name of the main source file) into a
stem and an extension. The extension specifies the start stage of the compila-
tion. For example, if the command line is

jeannie.sh Main.jni.pp

then stem is Main and the extension is jni.pp. Hence, processing starts at
stage jni.pp, and the first processing step runs the C preprocessor. By default,
jeannie.sh follows all processing steps from the start stage to the end. The -
stopAfter option overrides this default by specifying a stop stage. For example,
if the command line is

jeannie.sh -stopAfter i,class Main.jni

then processing stops after Main.i and Main.class have been generated. In
other words, jeannie.sh does not run the C compiler to create a dynamically
linked library.
Here is a brief description of each processing step:

Jeannie preprocessor
Inject Jeannie-specific definitions at the start of the file.

C preprocessor
Resolve #include and other directives and expand macros.

Jeannie compiler
Translate Jeannie code into separate C and Java code.

C compiler
Typically gcc, compile C code to dynamically linked library.
The file name of the generated library depends on the platform:

Chapter 3: Reference 29

stem.dll on Cygwin, libstem.so on Linux, and libstem.jnilib
on Mac OS.

Java compiler
Typically javac, compile Java code to class files.

Postprocessor
Inject //#line directives from .java file into .class files.

Options

-cc path File name of your C compiler. Overrides the CC environment vari-
able. If not specified, jeannie.sh uses the gcc executable it finds
in your PATH.

-cp | -classpath paths
Search existing user class files in paths. Overrides the CLASSPATH
environment variable. This is a list of directories or jar files, sepa-
rated by colons (on Linux or Mac OS) or semicolons (on Windows).
It must include the xtc root directory in order to find the classes
that implement the Jeannie compiler.

-d | -destpath dir
Write output generated files to dir. Specifically, if you compile a
class a.b.C, where a.b is the package name, the generated files will
have names based on dir/a/b/C.ext.

-flattenSmap
Rewrite line numbers with SMAP, do not stratify. The Jeannie
compiler changes the symbol information in generated class files
to refer to the original .jni source file to enable source-level
debugging. The -flattenSmap option determines whether this
is accomplished by erasing the line number information or by
adding an additional source map stratum as specified by JSR-45
http://jcp.org/en/jsr/detail?id=45. The difference becomes
visible for tools that do not yet support JSR-45, such as Java
virtual machines printing exception backtraces using the line
numbers of the Java source file.

-g Produce debugging symbols. Can not be used in conjunction with
the -pretty option. The -g option is passed through to the C
compiler as well as the Java compiler.

-h | -help
Print a short summary of the command line options of jeannie.sh.

-Idir Search header files in dir. This option is passed through to the C
preprocessor, which uses it to resolve #include directives.

-in dir See the -sourcepath option below.

-javaHome dir
Use the JDK installed in dir. Overrides the JAVA_HOME environment
variable. If not specified, jeannie.sh infers this directory based

http://jcp.org/en/jsr/detail?id=45

Chapter 3: Reference 30

on where it finds the java executable in your PATH. The Jeannie
compiler looks for javac and java in dir/bin.

-jniCall qualifier
Prepend generated C JNI functions with qualifier. Overrides
the JNI_CALL environment variable. This is the expansion of
the JNICALL macro defined in jni.h, which specifies the calling
conventions on platforms where that matters. You should not
need to specify this option, as jeannie.sh will infer it for you. It
is typically the empty string on Linux or Mac OS, and the string
“__attribute__((__stdcall__))” on Cygwin.

-llibrary Search library when linking with the C compiler. This option is
passed through to the C linker, which uses it to resolve external
symbols. For example, -lm specifies the math library (m) to search
for mathematical functions such as sqrt and cos.

-nowarn Disable compiler warning messages. By default, jeannie.sh in-
vokes the C compiler with -Wall; the -nowarn option overrides this
default. Also, -nowarn gets passed through to the Java compiler.

-platform platform
Compile for platform. Must be one of Cygwin, Linux, or MacOS.
Usually, jeannie.sh will infer the platform for you, but if it can’t,
you need to specify it on the command line. Note that this option
is not sufficient for cross-compiling, as the compilation also depends
on the installed C compiler, header files, and libraries.

-pretty Optimize generated code for human readability. Can not be used
in conjunction with the -g option. By default, jeannie.sh inter-
sperses generated Java code with line markers such as

//#line 7 Main.jni

Line markers are then uses to support debugging at the level of
the original source code, in this case, Main.jni. The -pretty op-
tion suppresses line markers and leads to more natural indentation.
That is useful when you need to inspect generated source code by
hand.

-underscores
Require leading underscore in keywords, e.g., _with. By default,
the Jeannie preprocessor defines aliases for keywords and builtin
functions that omit the leading underscore. But this can lead to
name clashes with included header files. When that happens, you
can resolve the name clash by specifying the -underscores option
and writing all Jeannie keywords and builtins with underscores.

-sourcepath dir
Read input source files from dir. Specifically, when you compile a
class a.b.C, where a.b is the package name, the source file should
reside in dir/a/b/C.jni.

Chapter 3: Reference 31

-stopAfter stage
Stop compiling after reaching stage. For example, if stage is
jni.i, then jeannie.sh will run the Jeannie preprocessor and the
C preprocessor, and then stop. See the Description above for
the full list of stages. By default, if -stopAfter is not specified,
jeannie.sh will run all stages.

-v | -verbose
Print commands executed by jeannie.sh. Each command is
prepended by the source location in jeannie.sh just before
running it. Also, each command may print its own messages, such
as a copyright notice.

-verboseSettings
Print internal settings of this bash script. This option is useful
when options or environment variables (see Environment below)
do not have the desired effect.

-- Treat remainder of command line as file names. This option is
useful when one of your file names starts with a dash (-), and might
therefore be mistaken with a command line option otherwise.

Environment

CC Name of your C compiler executable. See the -cc command line
option above for details.

CLASSPATH
Paths where to search existing user class files. See the -classpath
command line option above for details.

JAVA_HOME
Path where the JDK is installed. See the -javaHome command line
option above for details.

JNI_CALL Qualifier to prepend in front of C JNI functions. See the -jniCall
command line option above for details.

3.4.2 Preprocessor

Name xtc.lang.jeannie.Preprocessor – Inject Jeannie-specific definitions.

Synopsis java xtc.lang.jeannie.Preprocessor [options] file

Parameters

options Options may be in any order. See Options below.

file Main source file to compile, usually with the extension .jni. If
you omit the file name, the preprocessor prints a description of the
command line options.

Description
The Jeannie preprocessor injects Jeannie-specific definitions at the start of the
input file, and writes the result to stdout. This usually gets invoked from the

Chapter 3: Reference 32

jeannie.sh master script, but you can also run it stand-alone. In the usual
case, the input file would have extension .jni, and you would pipe the output
to a file with the extension .jni.pp. The injected definitions appear at the
start of the initial ‘.C{...} block, which means they precede any other C
declarations that you put there either directly or with #include.

Options

-silent Enable silent operation. This suppresses the boilerplate tool name
and copyright notice that the preprocessor emits otherwise every
time you run it.

-underscores
Require leading underscore in keywords, e.g., _with. By default,
the Jeannie preprocessor defines aliases for keywords and builtin
functions that omit the leading underscore. But this can lead to
name clashes with included header files. When that happens, you
can resolve the name clash by specifying the -underscores option
and writing all Jeannie keywords and builtins with underscores.

Environment

CLASSPATH
Paths where to search existing user class files. Must include the xtc
root directory to find the preprocessor itself.

3.4.3 Compiler

Name xtc.lang.jeannie.Jeannie – Translate Jeannie to Java and C source.

Synopsis java xtc.lang.jeannie.Jeannie [options] file

Parameters

options Options may be in any order. See Options below. Usually, you
would specify -analyze -translate to run both the semantic an-
alyzer and the code generator.

file Main source file to compile, usually with the extension .jni.i.
In general, you must run the Jeannie preprocessor and the C pre-
processor first, otherwise, many of the C identifiers in the file are
undeclared and lead to errors from the C semantic analyzer.

Description
The Jeannie compiler translates Jeannie source code into separate Java and
C source code. This usually gets invoked from the jeannie.sh master script,
but you can also run it stand-alone. In the usual case, the input would have
extension .jni.i, and the compiler generates two files with the same stem and
extensions .i (for preprocessed C code) and .java (for Java code). The options

Chapter 3: Reference 33

serve to run the compiler only partially and to print intermediate results. The
following picture illustrates how the compiler works internally.

stem.java

stem.jni.i

Parser

Analyzer

stem.i

Jeannie AST

Code generator

Jeannie AST
marked with types

Symbol
table

C Printer
C AST Java AST

Java Printer

-
a
n
a
l
y
z
e

-printAST

-printSymbolTable

-
t
r
a
n
s
l
a
t
e

-printSource

A detailed technical description of the Jeannie compiler internals is in the con-
ference paper at http://cs.nyu.edu/rgrimm/papers/oopsla07.pdf.

Options

-analyze Analyze the program’s AST. Required for -translate or
-printSymbolTable. Runs the Jeannie semantic analyzer on
the abstract syntax tree, which includes both C and Java type
analysis.

-in dir Add the specified directory to the file search path. When the com-
piler encounters a reference to a class that is not defined in the
current file, it searches for other files that define it. This search
starts in source files of the form dir/package/class.java. If it fails
to find the class this way, the compiler attempts to find a com-
piled version of the class based on reflection and the CLASSPATH
environment variable.

-jniCall word
Prepend generated C JNI functions with qualifier. This is the ex-
pansion of the JNICALL macro defined in jni.h, which specifies the
calling conventions on platforms where that matters. Defaults to
the empty string, which is correct on Linux or Mac OS; on Cygwin,
you should provide set it to “__attribute__((__stdcall__))”.

-out dir Use the specified directory for output.

-pedantic
Enforce strict C99 compliance.

http://cs.nyu.edu/rgrimm/papers/oopsla07.pdf

Chapter 3: Reference 34

-pretty Optimize output for human-readability. By default, the compiler
intersperses generated Java code with line markers such as

//#line 7 Main.jni

Line markers are then uses to support debugging at the level of
the original source code, in this case, Main.jni. The -pretty op-
tion suppresses line markers and leads to more natural indentation.
That is useful when you need to inspect generated source code by
hand.

-printAST
Print the AST in generic form. This will usually create a lot of out-
put on stdout. Looking at the abstract syntax tree helps compiler
hackers validate their assumptions when crafting visitors.

-printSource
Print the AST in Jeannie source form. The result should be more or
less the same as the input, with different indentation and without
comments.

-printSymbolTable
Print the program’s symbol table. Requires option -analyze.

-silent Enable silent operation. This suppresses the boilerplate tool name
and copyright notice that the compiler emits otherwise every time
you run it.

-strict Enforce strict C99 compliance.

-translate
Generate separate C and Java code. Requires option -analyze.

Environment

CLASSPATH
Paths where to search existing user class files. Must include the xtc
root directory to find the compiler itself.

3.4.4 Postprocessor

Name xtc.lang.ClassfileSourceRemapper – Add debugging symbols to classes.

Synopsis java xtc.lang.ClassfileSourceRemapper [options] source-file class-file

Parameters

options Options may be in any order. See Options below.

source-file Java source code file from which to extract line number information.
This is typically automatically generated by the Jeannie compiler.

class-file Java bytecode file to which to add line number information. This is
typically generated by the Java compiler translating the source-file.

Description
The Jeannie postprocessor augments class files with symbolic information. This
usually gets invoked from the jeannie.sh master script, but you can also run

Chapter 3: Reference 35

it stand-alone. The postprocessor reads the input source-file, which contains
line markers such as

//#line 7 Main.jni

Line markers map lines in the generated Java source file back to the original
Jeannie source file. The postprocessor injects this information into the class-file.
That is useful for source-level debugging and for exception backtraces.

Options

-flatten Append an SMAP to the end of the class file as “SourceDebugEx-
tension”. This is the default. The SMAP (source map) format
(specified in JSR-45 http://jcp.org/en/jsr/detail?id=45) is a
general and powerful way to provide remapping information for
source-to-source transformations. It works well with the current
Java debuggers (SUN jdb 1.6 and the eclipse 3.2 Java debugger).
However, JVMs in the SUN JDK 1.6 and IBM J9 1.5.0 do not use
the SMAP when dumping stack traces for exceptions.

-stratify
Rewrite the “LineNumberTable” attribute for each method in the
class file, and modify the “SourceFile” attribute. This has an ad-
vantage of working well with both the current Java VMs and de-
buggers. However, this does not work if the number of the original
source files is more than one.

Environment

CLASSPATH
Paths where to search existing user class files. Must include the xtc
root directory to find the postprocessor itself.

http://jcp.org/en/jsr/detail?id=45

Index 36

Index

A
abort . 11, 24
abrupt control flow . 11
arrays . 8

B
backtick . 20, 21
break . 11
builtins . 24

C
cancel . 11, 24
CLASSPATH 2, 4, 31, 32, 34, 35
commit . 11, 24
compiler . 32
configuration . 2
continue . 11
copyFromJava . 25
copyToJava . 25

D
debugging . 3, 14
dependencies . 1
download . 1

E
exceptions . 11

G
garbage collection . 7
getting started . 3
global references . 7
goto . 11
grammar . 18

H
hello world . 3

I
installation . 1

J
JAVA DEV ROOT . 2

Jeannie . 1
jeannie.sh . 27

L
LD LIBRARY PATH . 3, 4
locals . 6

M
master script . 27

N
newJavaString . 26

O
obtaining Jeannie . 1

P
PATH . 1, 2, 4
PATH SEP . 2
postprocessor . 34
preprocessor . 31
program structure . 5

R
regression tests . 2
requirements . 1
return . 11

S
stage . 28
strings . 13
stringUTFLength . 26
syntax . 18

T
testing the installation . 2
trouble shooting . 3, 14
types . 19

W
with . 23

	Introduction
	Installation
	Requirements
	Download
	Configuration
	Testing the installation

	Hello world!
	Trouble shooting

	Examples
	Program structure
	Locals
	Garbage collection
	Arrays
	Abrupt control flow
	Strings
	Debugging

	Reference
	Quick reference
	Language features
	Syntax
	Type equivalences
	C in Java
	Java in C
	with
	cancel and commit

	Builtin functions
	copyFromJava
	copyToJava
	newJavaString
	stringUTFLength

	Tools
	jeannie.sh
	Preprocessor
	Compiler
	Postprocessor

	Index

